首页> 外文OA文献 >Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose-volume histograms
【2h】

Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose-volume histograms

机译:基于剂量-体积直方图的考虑到对处于危险中的肿瘤和器官的物理剂量的分级照射方案的优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose-volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose-volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose-volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8-32 fractions with a daily dose of 2.2-6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose-volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation. (C) 2015 American Association of Physicists in Medicine.
机译:目的:已使用多种分割方案(例如多分割和低分割)对实体瘤进行放射治疗。然而,考虑到物理剂量分布,优化分级方案的能力仍然不足。这项研究旨在优化分级方案,其中作者提出了一种图形化的方法,用于基于肿瘤和肿瘤周围器官的正常组织的剂量体积直方图,选择最佳级分数(n)和每级分剂量(d) 。方法:采用修正的线性二次模型来评估对肿瘤和高危器官(OAR)的放射效应,在高剂量范围内,肿瘤细胞的重新聚集和剂量反应曲线的线性分数被考虑。在通过图形方法固定对肿瘤的放射效应的约束下,解决了对OAR的损伤效应最小化的问题。在此,基于剂量-体积直方图估计了对OAR的损害作用。结果:发现采用适当的细胞存活模型可以优化结合剂量-体积直方图的分级方案。考虑到肿瘤细胞的重新聚集和在高剂量范围内的直线响应的图形方法,使它们能够得出最佳的组分数和每组分的剂量。例如,在前列腺癌的治疗中,建议的最佳分馏范围为每日剂量为2.2-6.3 Gy的8-32馏分。结论:考虑到对肿瘤和肿瘤周围OAR的影响,可以通过图形化方法根据物理剂量分布(即剂量-体积直方图)来优化组分数和每组分的剂量。此方法可能会规定一条新的准则,以优化物理指导分馏的分馏方案。 (C)2015年美国医学物理学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号